About


7 September 2012

Persamaan Kuadrat

  A. Persamaan Kuadrat

Persamaan kuadrat dalam x mempunyai bentuk umum: ax2 + bx + c = 0 , a, b dan c adalah bilangan real

Menyelesaikan Persamaan kuadrat
Persamaan kuadrat dapat diselesaikan dengan beberapa cara, yaitu dengan:
a)  memfaktorkan,
b)  melengkapkan kuadrat sempurna,
c)  menggunakan rumus

  • Menyelesaikan persamaan kuadrat dengan memfaktorkan
ax2 + bx + c = 0   dapat dinyatakan menjadi a (xx1) (xx2) = 0. Nilai x1 dan x2 disebut akar-akar (penyelesaian) persamaan kuadrat.

Contoh 1 :
Selesaikan x2 – 4 x + 3 = 0
Jawab:    x2 – 4 x + 3 = 0
(x – 3) (x – 1) = 0
x – 3 = 0   atau    x – 1 = 0
x = 3   atau    x = 1
Jadi, penyelesaian dari x2 – 4 x + 3 = 0 adalah 3 dan 1.

Contoh 2 :
Tentukan himpunan penyelesaian dari (x – 2)2 = x – 2.
Jawab:         (x – 2)2 = x – 2
x2 – 4 x + 4 =  x – 2
x2 – 5 x + 6 = 0
(x – 3) (x – 2) = 0
x – 3 = 0   atau   x – 2 = 0
x = 3   atau          x = 2
Jadi, himpunan penyelesaiannya adalah {3 , 2}.

Contoh 3 :
Tentukan penyelesaian dari 2 x2 + 7 x + 6 = 0.
Jawab:    2 x2 + 7 x + 6 = 0
2 x2 + 4 x + 3 x + 6 = 0
2 x (x + 2) + 3 (x + 2) = 0
(x + 2) (2 x + 3) = 0
x +2 = 0     atau  2 x + 3 = 0
x = –2   atau           x = – 1
Jadi, penyelesaiannya adalah  –2 dan –1.
  •  Menyelesaikan persamaan kuadrat dengan melengkapkan kuadrat sempurna
Persamaan kuadrat  ax2 + bx + c = 0   dapat diselesaikan dengan mengubahnya menjadi (x + p)2 = q.

Contoh 1:
Tentukan himpunan penyelesaian dari x2 – 6 x + 5 = 0.
Jawab:   x2 – 6 x + 5 = 0
x2 – 6 x + 9 – 4 = 0
x2 – 6 x + 9 = 4
(x – 3)2 = 4
x – 3 = 2  atau x – 3 = –2
x = 5    atau     x = 1
Jadi, himpunan penyelesaiannya adalah{ 1 , 5}.
  •  Menyelesaikan persamaan kuadrat dengan menggunakan rumus
Rumus penyelesaian persamaan kuadrat a x2 + b x + c = 0 adalah
Contoh :
Tentukan himpunan penyelesaian dari x2 + 7x – 30 = 0.
Jawab:   x2 + 7x – 30 = 0
a = 1  ,  b = 7  ,  c = – 30
x = 3   atau   x = –10
Jadi, himpunan penyelesaiannya adalah {–10 , 3}.

  • Jenis-jenis Akar Persamaan Kuadrat
Kita perhatikan kembali persamaan kuadrat ax2 + bx + c = 0  dengan akar-akarnya  ,  b2 – 4ac disebut diskriminan (D). Sehingga rumus penyelesaian persamaan kuadrat dapat ditulis sebagai  .
Dari rumus tersebut tampak bahwa nilai  x tergantung dari nilai  D.
Apabila:
  1. D > 0  akar-akarnya merupakan bilangan real positif, sehingga persamaan kuadrat mempunyai dua akar real berlainan,       .
  2. D = 0  akar-akar persamaan kuadrat mempunyai dua akar real sama.                .
  3. D < 0  akar-akarnya merupakan bilangan tidak real (imajiner), maka persamaan kuadrat tidak mempunyai akar real atau persamaan kuadrat mempunyai akar tidak real.
Contoh :
Tanpa menyelesaikan persamaan lebih dahulu, tentukan jenis-jenis akar persamaan kuadrat berikut:
  1. x2 + 5 x + 2 = 0
  2. x2 – 10 x + 25 = 0
  3. 3 x2 – 4 x + 2 = 0
Jawab : 

x2 + 5 x + 2 = 0
a = 1  ,  b = 5  ,  c = 2
D = b2 – 4ac = 52 – 4 . 1 . 2 = 25 – 8 = 17
Ternyata  D > 0. Jadi, persamaan x2 + 5 x + 2 = 0  mempunyai dua akar real berlainan. 

x2 – 10 x + 25 = 0
a = 1  , b = -10  ,  c = 25
D = b2 – 4ac = (-10)2 – 4 . 1 . 25 = 100 – 100 = 0
Karena  D = 0, maka persamaan x2 – 10 x + 25 = 0  mempunyai dua akar real sama

3 x2 – 4 x + 2 = 0
a = 3  ,  b = –4  ,  c = 2
D = b2 – 4ac = (-4)2 – 4 . 3 . 2 = 16 – 24 = – 8
Ternyata bahwa  D < 0. Jadi, persamaan  3 x2 – 4 x + 2 = 0  tidak mempunyai akar real.

Latihan

  1. Tanpa menyelesaikan persamaannya, tentukan jenis-jenis akar persamaan kuadrat berikut ini:
  1. x2 + 6x + 6 = 0
  2. x2 + 2x + 1 = 0
  3. 2x2 + 5x + 5 = 0
  4. –2x2 – 2x – 1 = 0
  5. 6t2 – 5t + 1 = 0
  6. 4c2 – 4c + 3 = 0
  1. Tentukan nilai  p agar persamaan kuadrat berikut mempunyai akar yang sama (kembar)!
  1. 4x2 + 8px + 1 = 0
  2. 4x2 – 4px + (4p – 3) = 0
  3. px2 – 3px + (2p + 1) = 0
  1. Persamaan  x2 – 4px – (p – 1) = 0 akar kembar, tentukan persamaan kuadrat tersebut!
  2. Buktikan bahwa persamaan  x2px – (p + 1) = 0  mempunyai dua akar real berlainan!
  3. Buktikan bahwa    mempunyai dua akar real berlainan!
Jumlah dan hasilkali akar-akar persamaan kuadrat

Contoh:
Akar-akar x2 – 3x + 4 = 0 adalah x1 dan x2. Dengan tanpa menyelesaikan persamaan tersebut, hitunglah nilai:
  1. x1 + x2
  2. x1.x2 
  3. x13 + x23
  4. x12 + x22
Jawab:          x2 – 3 x + 4 = 0   a = 1  ,  b = –3  , c = 4
  1.  x1 + x2 = 3 
  2. x1.x2 = 4
  3.  x12 + x22 = x12 + x22 +  2 x1.x2 – 2 x1.x2 = (x1 + x2)2 – 2 x1 x2 = 2 (-3)2 – 2 . 4 =
  4. x13 + x23 = (x1 + x2)3 – 3 x1 x2 (x1 + x2) = 33 – 3 . 4 (3) = 27 – 36 = –9

Latihan

  1. Tanpa menyelesaikan persamaannya, tentukan jumlah dan hasilkali akar-akar persamaan berikut:
  2. Akar-akar persamaan x2 + 2x + 5 = 0 adalah p dan q. Dengan tidak menyelesaikan persamaan itu, hitunglah:
  3. Jumlah kuadrat akar-akar persamaan x2 – (k + 2)x + 2k = 0 adalah 20. Hitunglah nilai k.
  4. Jumlah kebalikan akar-akar persamaan ax2 – (a + b)x + 2a = 0 adalah 2. Hitunglah nilai a.
Menyusun Persamaan Kuadrat
Persamaan kuadrat dapat disusun dengan:
  •  menggunakan perkalian faktor,
  • menggunakan jumlah dan hasilkali akar-akar.
Menyusun persamaan kuadrat dengan menggunakan perkalian faktor
Pada bahasan terdahulu, persamaan kuadrat   x2 + p x + q = 0 dapat dinyatakan sebagai
(xx1) (xx2) = 0 sehingga diperoleh akar-akar persamaan itu x1 dan x2. Dengan demikian jika akar-akar persamaan kuadrat x1 dan x2 maka persamaannya adalah (xx1) (xx2) = 0.

Contoh 1:
Tentukan persamaan kuadrat yang akar-akarnya 3 dan -2.
Jawab:   (xx1) (xx2) = 0
(x – 3) (x – (-2)) = 0
(x – 3) (x + 2) = 0
x2 – 3 x + 2 x – 6 = 0
x2x – 6 = 0.


B.    Fungsi Kuadrat 

Fungsi f pada R yang ditentukan oleh: f(x) = ax2 + bx + c dengan a, b, dan c bilangan real dan  disebut fungsi kuadrat.
Jika f(x) = 0 maka diperoleh persamaan kuadrat  ax2 + bx + c = 0. Nilai-nilai x yang memenuhi persamaan itu disebut nilai pembuat nol fungsi f.
Nilai fungsi f untuk x = p ditulis f(p) = ap2 + bp + c.

Contoh 1:
Ditentukan: f(x) = x2 – 6x – 7
Ditanyakan:
  1. nilai pembuat nol fungsi f
  2. nilai f untuk x = 0 , x = –2
Jawab:
Nilai pembuat nol fungsi f diperoleh jika f(x) = 0
x2 – 6 x – 7 = 0
(x – 7) (x + 1) = 0
x = 7  atau  x = –1
Jadi pembuat nol fungsi f adalah 7  dan –1Untuk  x = 0   maka f(0) = –7
x = –2  maka f(–2) = (–2)2 – 6 (–2) – 7 = 9 


Contoh 2:
Tentukan nilai p agar ruas kanan f(x) = 3 x2 + (p – 1) + 3 merupakan bentuk kuadrat sempurna.
Jawab :
Supaya merupakan suatu kuadrat sempurna, syaratnya D = 0.
D = (p – 1)2 – 4 . 3 . 3 = 0
p2 – 2p – 35 = 0
(p – 7) (p + 5) = 0
p = 7   atau   p = –5
Jadi, agar ruas kanan f(x) merupakan suatu kuadrat sempurna, maka p = 7 atau p = –5.
Periksalah jawaban itu

Nilai Maksimum dan Minimum Fungsi Kuadrat
Untuk menentukan nilai maksimum/minimum fungsi kuadrat, perhatikan uraian berikut:
1)       f(x) = x2 – 2x – 3
= x2 – 2x + 1 – 4
=(x – 1)2 – 4
Bentuk kuadrat selalu bernilai positif atau nol, maka (x – 1)2 mempunyai nilai paling kecil (minimum) nol untuk x = 1. Dengan demikian (x – 1)2 – 4 mempunyai nilai terkecil 0 – 4 = –4.
Jadi, f(x) = x2 – 2x – 3 mempunyai nilai terkecil (minimum) –4 untuk x = 1.
2)       f(x) = –x2 + 4x + 5
= –x2 + 4x – 4 + 9
= –(x2 – 4x + 4) + 9
= –(x – 2)2 + 9
Nilai terbesar dari – (x – 2)2 sama dengan nol untul x = 2.
Dengan demikan nilai terbesar dari – (x – 2)2 + 9 adalah 0 + 9 = 9.
Jadi, f(x) = –(x – 2)2 + 9 atau f(x) = –x2 + 4x + 5 mempunyai nilai terbesar (maksimum) 9 untuk x = 2.
Sekarang perhatikan bentuk umum  f(x) = ax2 + bx + c
Dengan uraian di atas, diperoleh:
Fungsi kuadrat f(x) = a x2 + b x + c
Untuk a > 0, f mempunyai nilai minimum  untuk
Untuk a < 0, f mempunyai nilai maksimum  untuk
Contoh:
Tentukan nilai minimum fungsi f(x) = 2x2 + 4x + 7
Jawab:
f(x) = 2x2 + 4x + 7  ,  a = 2  ,  b = 4  , c = 7
Nilai minimum fungsi f = 5

C. Fungsi Kuadrat
Tanda-tanda fungsi kuadrat
Kedudukan parabola y = a x2 + b x + c terhadap sumbu-X tergantung pada nilai a dan nilai diskriminan 
  • Berdasarkan tanda a
a > 0 , grafik fungsi kuadrat mempunyai titik balik minimum (parabola terbuka ke atas).
a < 0 , grafik fungsi kuadrat mempunyai titik balik maksimum (parabola terbuka ke bawah).

  • Berdasarkan tanda D = b2 – 4 a c
D > 0 maka grafik fungsi kuadrat memotong sumbu-X di dua titik yang berlainan.
D = 0 maka grafik fungsi kuadrat memotong sumbu-X di dua titik yang sama atau parabola menyinggung sumbu-X.
D < 0 maka grafik fungsi kuadrat tidak memotong sumbu-X dan juga tidak menyinggung sumbu-X.



0 Comment:

Posting Komentar